File:AD-024-001-Safetransactions – Key technologies

L.Update: 14/07/99 15.47

Type:

Page: 11 / 1
ISHTAR Project - Contract IN31018I

Author: NEOSIS
Printed: 21/07/99

Secure Transactions – key technologies

Introduction

This document presents an overview of the key technologies that seem vital to the realisation of electronic trading – that is, mechanisms which implement basic security features, electronic payments, and digital copyright protection. One might ask if such a detailed analysis is really necessary, if we cannot just use some product that provides us with a service, as a black box. All the more, as the implementation of the system will anyway have to rely on software that is available on the market today. The point here is that these are the crucial, enabling technologies, and that they are at least partially based on comparatively young scientific disciplines. We must understand them before we can apply them. Even more so, as some of them tend to get a lot of coverage in popular media, and public discussion, but in a way which is by far to general, and maybe not always as accurate as it should be.

Security

In the context of secure communications in an open network system, it is usually interpreted as a combination of the key concepts of Confidentiality, Authentication, Integrity and Non-reputability:

· people want to know with whom they are communicating (Authentication),

· they want to ensure that what is sent is what is received (Integrity), and

· they want to prevent others from intercepting what they are communicating (Confidentiality), and

· they want to be able to rely on a contracts, in the sense that contract partners should not be able to back out of a contract by simple denial (Non-Reputability)

There are several proposed and operational mechanisms and protocols to achieve these goals. We will try to present an overview on the state of the art in general, but keep the focus of our attention oriented towards the World Wide Web, where the Secure Sockets Layer (SSL) protocol is presently the best known and most widely used security solution, and we will therefore look at it in greater detail.

Cryptography

Let us first consider the simple ‘classic’ situation where A wants to send a message to B over the Internet, to transfer some money. A would naturally then like the message to be private, since it will include confidential information, such as a credit card number. One solution is to use a technique that would transform the original message - the plaintext - into an encrypted form, called the ciphertext, which may only be interpreted through the use of a secret key.

[image: image1.wmf]D

E

 ciphertext

plaintext

plaintext

A

B

Encryption (E) and decryption (D) are two phases of an cryptographic algorithm, which is also called a cipher. It is important to note that the security of any cipher relies on the value of a secret key, not the secrecy of its method – in fact, the algorithms themselves are usually widely publicised. Ciphers may be broken, if one manages to find the correct key value by other means - in the simplest case, by an exhaustive search on all possible key values. One may rightly infer that intruders may always break any algorithm in theory, assuming unlimited time and computing resources. However, the cryptographic algorithms that are in use today are said to be ‘reasonable secure’, if they ensure that a cipher cannot be broken within the timeframe in which an encrypted message is valuable, or if the cost for breaking the message would simply surmount the gained benefit.

Symmetric ciphers
Symmetric ciphers are the classic cryptographic algorithms. The name indicates that it requires the use of the same secret key both for encryption and decryption :

[image: image2.wmf]D

E

ciphertext

plaintext

plaintext

A

B

key

The most common use of a symmetric cipher was already mentioned, namely, to transmit an encrypted message over an insecure channel so that someone who taps the communication channel, will be tapping ciphertext.

Probably the best known symmetric encryption algorithm is the Data Encryption Standard (DES), adopted under that name by the U.S. Government in 1977. The basic DES algorithm works via repeated permutation and substitution operations, using a 56-bit secret key value on fixed length data blocks of 64 bits. There exist several variations, which add repetition and recursivity to the basic algorithm to enhance its security (e.g., Triple DES).

Asymmetric ciphers

The use of symmetric ciphers relies on the assumption that the sender and the intended receiver share the knowledge of the secret key, and have (by some clever protocol?) agreed to use it. Asymmetric algorithms take a different approach, which does not require a shared secret between the sender and receiver. Instead of a single key for both decryption and encryption, asymmetric ciphers work with key pairs, where any ciphertext generated with the one key of a pair may only be decrypted with the other key of the same pair, and vice versa.

Asymmetric cryptography is also called public key cryptography, as it allows one to receive secure messages by simply declaring one key as public, and keeping the complementary keys secret.

[image: image3.wmf]A

D

E

ciphertext

(private)

plaintext

plaintext

B

 B's public key

B's private key

Asymmetric ciphers additionally provide for a good message authentication mechanism: if a given message is encrypted with the secret key of the sender, anyone may use the public key to verify that the message was indeed sent by – well, by the holder of the corresponding secret key.

[image: image4.wmf]A

E

D

ciphertext

(public)

plaintext

plaintext

B

 B's public key

B's private key

This is the also basic concept which enables digital signatures.

Since asymmetric ciphers might still be used for the same conventional purposes as symmetric ones, the concept may seem generally superior due to its greater versatility. Unfortunately though, any known asymmetric cipher is much slower than even the strongest known symmetric approach, so that asymmetric ciphers are mainly used to complement symmetric ones with their extended capabilities. Most secure communication protocols, for instance, use asymmetric algorithms to provide for the secure exchange of a secret key, and then use a conventional symmetric cipher to transmit the actual data.

By far the best known asymmetric cipher is the RSA algorithm, named after its inventors Rivest, Shamir, and Adleman in 1978. RSA is certainly a de facto standard today ; sometimes the name actually seems to be used as if it were a synonym for asymmetric ciphers in general.

For encoding and decoding of a message, RSA applies the same mathematical formula with two respectively inverse operands, where it is computationally infeasible to infer one from the other, as it requires the factoring of large numbers. Note that, however, factoring algorithms are still more efficient than an exhaustive search on all possible key values, which is one reason why RSA keys have to be longer (512-1024 bits) than keys that are used for symmetric encryption (e.g., 56 bits for the DES algorithm).

RSA is the most commonly used algorithm for digital signatures in authentication protocols, and in a number of electronic payment mechanisms, including SET CyberCash, or DigiCash’s ecash.

Hash Functions

Hash functions are irreversible cryptographic functions. They apply a one-way transformation to a message, which produces a short, fixed length code number, the hash of the message. A hash code has two important properties :

· the hash does not allow one to infer the original message, and

· is very unlikely that two given different input values have the same hash representation.

One very common application of hash functions is password checking. To be able to verify whether a user entered a correct password, a system only needs to store its hash representation, which is obviously less useful to an intruder, who needs to know the password itself.

Digital Signatures

In the context of communications via unreliable channels, an obvious application for hash functions is to establish the integrity of sent messages. In such a context, the hash is usually called a message digest. As the hash function is (assumed to be) to be publicly known, an attacker might still try to modify both the message and the authenticating hash, but it is possible to prevent this by combining the use of the hash function with an asymmetric cipher, and to encrypt the hash with the private key of the sender. Indeed, encrypting a hash of a message is the normal way to create a digital signature, as immediate asymmetric encryption of the whole message would be a very processor-intensive operation, and is not feasible in real world applications.

A digital signature may be used both to authenticate a message, and to assert its integrity. A digital signature also establish non-reputability, at least if people can be held responsible for not adequately protecting their private keys, so that any claims that someone must have stolen one’s private key to create a false signature do not provide a facile excuse.

Public Key Infrastructures

As the previous sections have illustrated, a digital signature may be used to assert that a message was actually sent by a the holder of a certain key - but how does one verify that a given key actually belongs to the correct subject?

The answer is, simply, by another digital signature. In particular, a proof of key ownership may be established by a so-called certificate - which validates the other's identity and confirms his or her public key, by the digital signature of a trusted third party. The general framework that is necessary to manage public keys and certificates is commonly called Public Key Infrastructure (PKI). The trusted third party that generates certificates is called the Certification Authority (CA).

Certification Authorities

The role of the Certification Authority (CA) is, above all, to assure the identity of the private key owner of a key-pair. It does this by creating a certificate, which is a simply digitally signed data record that consists of the public key and the real identity of its holder, and identity of the CA itself.

The concept of the digital signature that vouches for a digital signature may be iterated, of course. A CA may issue a certificate for another CA. When examining such a certificate, one may recursively need to examine the certificates of a whole chain of certificate issuers, until one reaches a certificate that was signed by a known trusted authority. Each certificate along the chain has another certificate to assert its validity, up to a root-level CA. The certificate of a root CA is self-signed, i.e. the certificate subject and issuer are identical. The public key of the root CA is assumed to be well-known, so that it would be obvious if someone else tried to impersonate that authority (with a different key pair). A number of companies, such as VeriSign, have recently (=in the past few years) established themselves as CAs on the World Wide Web, so that commercial Web browsers products are usually pre-configured to accept them. With some reservation, the VeriSign might thus be cited as an example for such an Authority with a well-known public key.

It is important to note that the one-time issuing of a certificate is not the sole activity of a CA. Certificates and public keys need to be managed – the CA must not only determine how long certificates are valid, but it may need to renew

[image: image5.png](Blobal Rooty

Country (€)

Orgarisation (0)

M Femando i Piro de.

Camman Narme (CH) Vi Sabbata

X.500 Distinguished Names

them, and it should also keep publicly accessible lists of certificates that have already been issued but are no longer valid (certificate revocation lists, or CRLs)
.

Standard Formats

There are several existing and proposed or drafted international standards that define a syntax for public key certificates and related objects (e.g., certificate requests messages, or revocation lists). A prominent example are the Public-Key Cryptography Standards (PKCS) which were developed in 1991 by RSA Laboratories with representatives of several other IT companies, such as Apple, Digital, Lotus, and Microsoft. The most widely used syntax for public key certificates is defined in the ITU-T Recommendation X.509, which also defines an authentication service for X.500 Directories. The X.500 standard was originally designed to establish a global, distributed address database, which was never implemented in that form. X.509 adopts the X500 concept of hierarchical Distinguished Names to specify the identities of the key holder and the signing entity. A distinguished name consists of a set of attributes (such as the country code, organisation name, common name of subject, etc.) that provide an identity in a specific context - for instance, an individual might have a personal certificate as well as one for their identity as an employee.

Besides the public key, and the Distinguished Names of the key holder and the certificate issue, each X.509 certificate also includes a unique serial number assigned by the CA, and the period of time during which the certificate is valid.

Secure Communication Protocols

Cryptographic algorithms as such provide no security services yet. Instead, protocols must apply cryptography to implement the common concepts of confidentiality, authentication, and non-reputability in network communications. To the designer of an open yet secure communication architecture, protocols are actually much more relevant than the ciphers as such, and it is important to note that flaws in a given protocol, or application of a protocol, are much more frequent than flaws in the cryptographic algorithms. Where the protocol is vulnerable, intruders will usually find the protocol level attack much more feasible and more effective than a brute force or cryptoanalysis attack on a given code or cipher.

This section is focused on on-line communication protocols that are immediately applicable to a World Wide Web scenario. We do not cover secure e-mail protocols, although one may easily imagine that secure mail may also become very useful for electronic trading in the future.

Secure Socket Layer (SSL)

The Secure Socket Layer (SSL) Protocol was developed by Netscape Communications Corporation to provide secure communications on the Internet. It describes a protocol layer which may be placed between the transport layer protocol (TCP/IP) and any application protocol. The SSL protocol allows common Internet protocols like HTTP, FTP or Telnet to use it transparently. It provides for client and server authentication, and message confidentiality and integrity.

The protocol is designed to support a range of choices for specific algorithms used for cryptography, digests, and signatures, which makes it easy to take advantage of new developments in cryptographic algorithms. The protocol version most commonly used on the Internet today is SSL 3.0, proposed in late 1995 to fix some known security problems of its predecessor SSL 2.0 (1994,) and adds some flexibility and general functionality improvements.

The SSL Protocol and Algorithms

The SSL protocol clearly distinguishes between a client and a server role in each connection. An SSL connection is established after a client connects to the server, and negotiates negotiate the algorithms that they will use during the session, after which client and server exchange a secret key to be used for secure communication, and authenticate each other. The initialisation phase is somewhat variable, in particular, the server authentication phase depends on the key exchange method, and the client authentication is optional entirely (the server may request it, or not).

The cryptographic algorithms that are negotiable between the client and the server comprise a key exchange method, the cipher to be used for data transfer, and a hash algorithm. These algorithms determine the way how the secure communication channel will be established, and also influence its level of security.

Key Exchange Method : The key exchange method defines how client and server share the secret symmetric cryptography key that is used for data transfer. By far the most common method that is used today is RSA key exchange, which relies on asymmetric encryption, and certificates. In this case, the server sends a message containing the X.509 certificate for his public key, and optionally a chain of certificates up to a root level authority. The client is then able to verify the server’s public key certificate, and may send private messages to the server, as it knows and trusts its public key. The SSL protocol specification does not define its own fixed hierarchy of trust, it just leaves it up to the client whether to accept a certificate or not. Given that the client accepts, it will send 46-byte (=368 bit) long random quantity to the server, whereupon both sides use this quantity to compute the secret keys to be used for encryption and message authentication. The random data that is sent by the client is encrypted with the server’s public key, which serves a dual purpose:
· the session key will be confidential between client and server, and

· the server is authenticated, as it may only decrypt the data if it actually holds the private key that corresponds to the certificate he sent to the client.

Thus, the key exchange phase and server authentication actually collapse into one. After a successful key exchange and server authentication, the server may optionally request client-side authentication, which works via a similar concept : the server sends some bytes of random data for the client to sign, and a list of acceptable certificate issuers The client will respond with his digital signature for this data, and a certificate for his signature key.

Data Transfer Cipher: SSL uses symmetric ciphers to encrypt transferred data. It offers different options for the algorithm, as listed in the table below:

Cipher name
Key length (bits)

Block Ciphers
RC2
40, 128

DES
40, 56

Triple DES
192

IDEA
128

Stream Ciphers
RC4
40, 128

SSL Transfer Ciphers

SSL uses all of the listed block ciphers in cipher block chaining (CBC) mode, which effectively encrypts a continuos byte stream rather than separate blocks. RC4 and RC2 are proprietary algorithms from RSA Data Security Inc., developed by Ron Rivest. DES and its variants were already mentioned in. The International Data Encryption Algorithm IDEA is currently regarded as one of the securest available block ciphers.
Hash Function : The SSL data transfer mechanism fragments all messages that pass between the client and server into fixed-length units, and attaches a secure hash code to each unit (=Message Authentication Codes, or Macs), before encrypting it. SSL currently supports two different options for a hash function, namely, MD5 , a 128-bit hash developed by Ron Rivest and the so-called Secure Hash Algorithm, SHA.
By far the most common use of SSL is to secure the communication between a browser client and a web server on the World Wide Web. By common convention, the difference between a SSL hyperlink and a normal http connection is indicated in the protocol component of the URL – which is http:// for clear text HTTP, and https://, for HTTP over SSL. SSL compliant browsers usually also provide some (minimal) key and certificate management functions. In case of integrated communication platforms such as Netscape Communicator or the Microsoft product range, the same keys and certificates may be used for SSL as well as other applications, such as secure e-mail.

Most commercial browser and server products support SSL, although encryption strength is downscaled to 40-bit transfer ciphers and 512-bit signature keys for products that are exported from the U.S. The shorter the key, the easier it is to break a code with a brute force attack, and as far as we know, any reports that the ‘SSL protocol had been cracked’ actually refer to examples where a 40-bit session key was retrieved through an exhaustive search among all possible keys.

The weak 40-bit key lengths for the data transfer cipher were included in the protocol specification to cope with export restrictions that U.S. government agencies impose on cryptographic software : cryptographic software is considered as munitions, and is therefore subject to the International Traffic in Arms Regulations (ITAR).

SSL - Compatible Protocols : PCT and TLS

Microsoft and Visa International have developed a counterpart to Netscape's SSL protocol, which is called Private Communication Technology (PCT). PCT is quite similar to SSL in many respects, and in fact the message formats are similar enough to allow a PCT server to interact both with SSL and PCT clients. Like SSL, PCT was intended for Internet standardisation, which is now proceeding with the Transport Layer Security (TLS) protocol, that is developed by the IETF as the next generation open transport layer security protocol for the Internet. TLS 1.0 is largely based on SSL 3.0. It was released in 1997, but it is not yet widely used at the time of writing. It is downwards compatible to SSL, and it is to be expected that it will replace this protocol during the next few years, while SSL and PCT themselves will be discontinued.

Secure Hypertext Transfer Protocol

The Secure Hypertext Transfer Protocol (S-HTTP) is a secure message-oriented communications protocol designed to provide for the exchange of multimedia documents on the Web, in conjunction with HTTP.

S-HTTP reflects the basic request-response paradigm of HTTP, and mimics much of its style and syntax to allow for coexistence and integration. The S-HTTP draft explicitly states that the protocol is aimed at enabling ‘spontaneous commercial transactions’ on the World Wide Web. The protocol is designed in such a way that S-HTTP enabled clients can communicate transparently with normal HTTP servers and vice-versa, although such transactions obviously will not use any security features.

In its scope of functionality, S-HTTP is not entirely unlike SSL. Both support multiple ciphers and key management mechanisms, with a similar set of choices to be negotiated dynamically between the parties that are involved in each transaction. The main difference between the SSL and S-HTTP is the layer at which they operate. SSL resides as a transparent intermediary between the transport layer and application layer, while S-HTTP is itself an application protocol. Whereas SSL is connection-oriented, S-HTTP is aware of the actual application protocol, and encrypts each HTTP message separately. A feature that SSL lacks is that S-HTTP therefore allows a user to produce digital signatures on any separate message, and therefore provides for offline authentication and non-reputability. SSL would be rather impractical to use for such a purpose, as it relies on dynamic, shared keys to authenticate data records during transfer, once the communicating parties have authenticated each other during the handshake phase.

S-HTTP was originally developed by Enterprise Integration Technologies. and its development is currently carried on at Terisa Systems. However, while S-HTTP is somewhat similar in functionality as SSL, the latter is now in fairly wide spread use on the Internet, while S-HTTP is not yet commonly supported by commercial web browser and server applications. This may be explained by the fact that SSL is more versatile as it may be used with any application protocol, but also by the strategic advantage that SSL had in its deployment. In particular, SSL was originally developed by Netscape, and shipped with Netscape products as a built-in feature from the very beginning (SSL 1.0 in Navigator 2.0), when Netscape was still the predominant web browser software, and SSL was then adopted by Microsoft in the pursuit for product leadership. At the time of writing, S-HTTP is not supported by either of these companies.

Security Toolkits

A number of cryptographic toolkits exist which may be used to implement SSL, some of which also provide a ready-to use SSL implementation, and the facilities for creating ones own CA. These toolkits often include an extensive general-purpose cryptographic library, to support general encryption, signature and message digest, and certificate management routines. In the United States, each such toolkit also requires the use of a licensed public key package, as the RSA algorithm is patented. Two such prominent RSA public key packages available; the RSA reference implementation RSARef, which is an unsupported source code toolkit from RSA for freeware and non-commercial applications, and the commercial counterpart, BSAFE. Due to ITAR regulations, neither of them are freely available outside the United States other than in a downscaled version that only allows limited key lengths, namely, 512-bit RSA and 40 bit for symmetric ciphers like DES and RC4. The same applies to Microsoft’s CryptoAPI, Netscape SSL reference implementation SSLRef, and a toolkit from Terisa Systems that supports both SSL and S-HTTP.

For full-strength encryption outside of the U.S, probably the best-known and most popular SSL toolkit are the SSLeay libraries from Eric Young and Tim Hudson. SSLeay is freeware, even for commercial purposes as long as credit is given to its authors, and available with full source code, for a very large number of platforms. The latest release implements a large library of cryptographic algorithms, as well as SSL 2.0, 3.0, and TLS 1.0. SSLeay also includes a RSA implementation which is notable free for use only outside of the United States, as RSA’s patent rights do not apply internationally. Another ‘unrestricted’ though commercial security toolkit is SECUDE, developed by the German GMD (Gesellschaft für Mathematik und Datenverarbeitung), which offers a wide range of cryptographic algorithms and PKI libraries.

IPSec

The Internet Protocol Security (IPSec) standard is quickly becoming the workhorse for interoperable network encryption. As a result of the US automotive industry’s embracing of IPSec for use in the path-breaking Automotive Network eXchange (ANX) program, IPSec has gained acceptance among vendors of encryption gear throughout the world and has become a requirement of many institutions looking to implement Virtual Private Network (VPN) solutions in their networks.

IPSec is a series of guidelines for the protection of Internet Protocol (IP) communications. It specifies ways for securing private information transmitted over public networks. Services supported by IPSec include confidentiality (encryption), authenticity (proof of sender), integrity (detection of data tampering) and replay protection (defense against unauthorized re-sending of data). IPSec also specifies methodologies for key management. Internet Key Exchange (IKE), the IPSec key management protocol, is a series of steps that establishes keys for encrypting and decrypting information; it defines a common language on which communications between two parties is based. Developed by the Internet Engineering Task Force (IETF), IPSec and IKE together standardize the way data protection is performed, thus making it possible for security systems developed by different vendors to interoperate.

IPSec works in two ways. The first, transport mode, is the native way. As shown below, it is the direct relaying of IPSec protected data from host to host. It is used in devices that incorporate IPSec into the way they stack TCP/IP data: for example a laptop outfitted with client encryption.

[image: image6.png]Host Host

The second IPSec method is tunnel mode. Here, IP traffic generated by hosts without IPSec support is captured from the wire by a security device, or gateway. As shown in the diagram below, the gateway encapsulates the entire IP packet with IPSec encryption, including the original IP header. It then adds a new IP header to the data packet and sends it across the public network to a second gateway, where the information is decrypted and sent in its original form to the designated recipient.

 [image: image7.png]Application - Application
Tcp [ubp - Tcp [ubp

P - P

IPSec @&
1P

Security Gateway Security Gateway

Tunneling is performed by a VPN device which resides at the entrance/exit points of a network. The device modifies (encrypts and authenticates) outgoing traffic and decrypts and authenticates incoming data according to the methods outlined by IPSec.

Tunneling is used to created secure VPNs. It enables distributed private networks to communicate securely over untrusted, public networks. When using tunneling over the Internet, companies can build secure wide area networks (WANs), intranets and extranets at a fraction of the cost associated with traditional methods. VPNs implemented in non-Internet environments, such as frame relay networks, provide comprehensive protection for mission critical applications. In all its configurations, tunneling is a money saving technology, both in terms of reduced communications costs and prevented security breaches.
For more information related to VPN see IPSec organization in http://www.ip-sec.com .

Electronic payments

Please refer to the ISTHAR NEOSIS document about this subject.

Annexe A

Publications

[1] C.Kaufman, R Perlman,. Spencer, M. Network Security : Private Communication in a Public World, Prentice Hall, New Jersey, 1995

[2] ISO 7498-2, Open Systems Interconnections - Security Architecture, Geneva,

[3] Data Encryption Standard. Federal Information Processing Standards publication 46-2, December 1993

[4] R.Rivest, A.Shamir, L.Adleman, “A method for obtaining digital signatures and public key cryptosystems” Communications of the ACM, 21, 1978, pp.120-126

[5] Marc Branchaud, A Survey of Public Key Infrastructures, Thesis, McGill University Department of Computer Science, Montreal, March 1997.

[6] ITU/ISO Recommendation X.500, Information technology – Open Systems Interconnections – The Directory : Overview of concepts, models and services, November 1993

[7] ITU/ISO Recommendation X.509, Information technology – Open Systems Interconnections – The Directory : Authentication framework, November 1993,

[8] ITU/ISO Final text of draft amendments to X.500 | 9594 for certificate extensions, 1996.

[9] R.Rivest, “The MD5 Message-Digest Algorithm”, RFC-1321, April 1992

[10] Secure Hash Standard. Federal Information Processing Standards publication 180-1, April 1995

[11] D.O’Mahony, M.Pierce,.H.Tewari, “Electronic Payment Systems”, 1997

[12] The IDEA Algorithm was first outlined in X.Lai, J.Massey, “A proposal for a new Block Encryption Standard”, Advances in Cryptology – EUROCRYPT ’90, Workshop on the Theory and Application of Cryptographic Techniques Proc., Lecture Notes in Computer Science, Vol.473, Springer Verlag, Berlin,1991

[13] C.B.Neuman, G.Medvinsky, NetCheque, NetCash, and the Characteristics of Internet Payment Services, MIT Workshop on Internet Economics 1995,

[14] Cox,B. Tygar,J.D. Sirbu,M. NetBill Security and Transaction Protocol, Technical Report, Carnegie Mellon Univeristy, 1995

[15] A. Kerckhoffs, “La Cryptographie Militaire”, Journal des Sciences Militaires, 9, 1883.

Web sites and Internet Drafts

[16] Internet Public Key Infrastructure, Housley R. Ford, S.W. Farrel, D.Solo, IETF PKIX Working Group, June1996, Internet Draft : draft-ietf-pkix-ipki-part1-02.txt.

[17] The VeriSign CA, see http://www.verisign.com/
[18] The Public Key Cryptography Standards : At the time of writing, all of the PKCS standard definitions can be found online at http://www.rsa.com/rsalabs/pubs/PKCS.
[19] Kocher,P.,Freier,A. Karlton,P. The SSL Protocol, Netscape Communications Corp., Feb.1995, available at http://www.netscape.com/newsref/std/SSL.html
[20] The old SSL 2.0 specification is still available
at http://home.netscape.com/newsref/std/SSL_old.html
[21] For an example of a successful attack on a SSL session with 40-bit RC4 encryption, see http://pauillac.inria.fr/~doligez/ssl/

[22] The TLS Protocol Version 1.0 of the IETF Transport Layer Security Working Group, is published as an Internet draft (draft-ietf-tls-protocol-05.txt) and available at

 http://www.ietf.org/internet
-drafts/draft-ietf-tls-protocol-05.txt
[23] S-HTTP is published as an Internet draft, draft-ietf-wts-shttp-02.txt, describes S-HTTP 1.2,

draft-ietf-wts-shtml-02.txt, describes related security extensions for HTML (S-HTML). Both drafts are dated May 1996, and expired November 1996.

[24] BSAFE3.0: http://www.rsa.com/rsa/prodspec/bsafe/bsafe_3_0_f.htm
[25] The public RSA reference implementation :

 http://www.consensus.com/RSAREF/rsaref_toc.html
[26] Netscape’s SSL reference implementation: http://www.netscape.com/newsref/std/sslref.html

[27] Microsoft’s CryptoAPI: http://www.microsoft.com/security/tech/misf6.htm

[28] Terisa Systems Homepage, http://www.terisa.com
[29] The SSLeay toolkit and product information are available via

 http://www.ssleay.org and http://www.cryptsoft.org.

[30] The SECUDE Security Toolkit: http://www.darmstadt.gmd.de/secude/
[31] First Virtual Home Page, http://www.firstvirtual.com/
[32] Netscape mit spezieller verschlüüselung für banking

[33] MasterCard and Visa, Secure Electronic Transaction (SET) Specification
 http://www.mastercard.com/set/set.htm
[34] NetCheque : http://gost.isi.edu/info/netcheque
[35] NetCash is an operational research prototype for electronic cash based payments developed at the Information Sciences Institute of the University of Southern California. It is operational in the U.S. since May 1994, in a pilot run by Software Agents, Inc. (NetBank), available at
 http://www.teleport.com/~netcash/
[36] NetBill : http://www.ini.cmu.edu/netbill
[37] The CyberCash Home page may be found at http://www.cybercash.com/cybercash/
[38] Information on ecash may be obtained via the DigiCash home page at http://www.digicash.com/

[39] Millicent : http://www.millicent.digital.com/discover/consumer/index.html
[40] The e-COMM Pilot: www.e-comm.fr
[41] CyberCard: www.cybercard.tm.fr
[42] CAFE (Conditional Access for Europe) was an EU-funded project during 1992-1995. Its mechanism is based on concepts fist developed by David Chaum, which are also used with DigiCash’s ecash. CAFE actually combines features of electronic cash with elements of electronic checks.

[43] Mondex: http://www.mondex.com

[44] Europay, MasterCard, and Visa: EMV’96: integrated Circuit Card Specification for Payment Systems, June 1996, http://www.mastercard,com/emv/

[45] The FSTC Electronic Check Project, http://fstc.org/projects/echeck/echeck2.html
Chip-Secure Electronic Transaction (C-SET):
 http://www.europayfrance.fr/us/commerce/secur.htm
3. Ishtar project safe transactions

In ISHTAR project we need to implement to kinds of safe transactions: one for the business to business (B2B) side and other one for the business to consumer (B2C) side. In the B2B side we need to implement safe transactions between the suppliers and the central server and between de central server and the ISHTAR stores. Note for this propose we consider ISTHAR mobile retailers similar to ISHTAR stores. Inside this environment we can implement trust connection using a VPN (IPSec) between all the players over the Internet. The best method is using dedicated hardware like routers with this capabilities or hardware only for crypt/decrypt ip packets instead of software. Because for the suppliers and central server side we need to put the servers inside a LAN and for these reason the router approach is the best options. For the ISTHAR stores we can use software or hardware, but if we use an small SOHO router with VPN IPSec capabilities we have the possibility to improve connectivity and access to the VPN with a single cheap machine. In the particular case of the mobile retailers we need to ponderate the choice between dedicate hardware (Specific PC cards for IPSec) and software for do the same with a normal modem/PC card. But is also important to protect the inside LAN’s from attack’s from the VPN network. For this reason we suggest the use of firewall in the door of inside Lan’s. In resume we suggest the use of IP Filtering and Tunnel Mode IPSec, which involves a combination of implementing a routed network topography and security policy.

In the B2C environment we need to distinguish between confidential information and no confidential information. Usually inside a process of buying in Internet is possible to find 3 deferent stages of security: Process of registration or consult confidential information (usual using SSL (https)); the payment method (usually using maximum security like SET) and the simple visualization site contents (usually without security). The first question usually the people ask is Why we don’t use ssl connection in all the site ? The answer is, because using ssl we consume extra recourses from the servers and performance decrease. For this reason we use only SSL connection when its absolutely necessary. Don’t forget, for the implementation of SSL inside an http server is necessary a digital certificate.

[image: image8.wmf]Central Servers

ISHTAR

Safe transactions Scenario

NEOSIS

I

N

T

E

R

N

E

T

Supplier A

Supplier B

SHOP

Internet Consumer

VPN

Software

or

hardware

using IP

SEC

I

N

T

E

R

N

E

T

ServerSupplier

ServerSupplier

Gw with VPN

 IPSec support

Gw with VPN

 IPSec support

Gw with VPN IPSec support

SSL connection

VPN IPSec connection

Simple TCP/IP connection

firewwal

firewwal

� EMBED Visio.Drawing.4 ���

� To illustrate this point, let us suppose an employee of a company is entitled to a company certificate. Suppose too, that the employee then loses his job, and that the certificate needs to be revoked prior to its normal date of expiry. Since certificates are generated once, and then get passed around, it is impossible to tell from the certificate alone whether it is has been revoked prematurely. When examining certificates for validity, therefore, it is necessary to contact the issuing Certification Authority to check the revocation lists.

